$p(author | document) = \frac{p(author)p(document | author)}{p(document)}$
$p(document | author) = \prod_{features} p(feature | author) $
Data: $\{x_1, x_2, \dots ,x_n\} \in \mathbb{Z}$ $x_i$ = # count of feature i in the document Vocabulary is $V$. Document length is $|D|$.
Learning: $p(author) =$ (# test documents of author)/(# test documents total)
$p(f_i | author) \sim Multinomial(n=1,\theta_i)$
$\theta_i$ = (# $f_i$ in test documents of author)/(# features in test documents of author)
$p(doc=\bar{x} | author) \sim Multinomial(doc | author, n=|doc|,\theta) * Laplace(\theta | \mu, b) $